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An implicit upwind scheme of almost second-order accuracy is developed for solving the 
Euler equations in a conservative form. The scheme is obtained by modifying the Coakley 
dissipation function and introducing a smooth transition function at the sonic point. The 
smooth transition function was introduced to avoid the sonic-line glitch due to the eigenvalue 
switching. Since upwind differencing is naturally dissipative, the stability of the present scheme 
is enhanced. Numerical results demonstrate that the present scheme is as accurate as the TVD 
scheme (Yee, Warming, and Harten, AIAA Paper 83-1902, 1983) and as efficient as other 
upwind schemes (Coakley, AIAA 83-1958, 1983). 0 1989 Academic press, IX 

1. INTRODUCTION 

In recent years many researchers have focused on the study of efficient high 
resolution schemes for hyperbolic systems of conservation laws [l-S]. Generally 
speaking, the schemes used for a hyperbolic -system may be classified into three 
categories: (1) space centered schemes; (2) TVD schemes; (3) upwind schemes. The 
space centered schemes [9, lo] require an additional artificial viscosity for stable 
computation. The damping coefficient must be carefully tuned for different 
problems. The delicate TVD scheme, first introduced by Harten, is successful in 
generating oscillation-free solutions, but needs much longer CPU time due to more 
operations (or function evaluations) for each iteration. The upwind schemes 
[S, 6, 83 of flux vector splitting are based on characterstic theory and possess 
natural dissipation. The split-flux vectors of Steger and Warming [S] might 
produce a glitch near the sonic point due to eigenvalue switching. To smooth out 
the sonic-line glitch, Buning and Steger [ 111 introduced continuous split eigen- 
values to replace discontinuous split eigenvalues. The modification in the split 
eigenvalues is equivalent to adding a dissipation term of fourth derivative [ 121. 
Another approach to the eigenvalue switching problem has been proposed by 
van Leer [13]. 

In 1981 Huang [2] introduced an first-order upwind scheme which can capture 
a sharp shock front in the vicinity of the shock; but it also can generate a glitch (or 
kink) at the sonic point. In the Huang’s scheme, the dissipation function is propor- 
tional to flux difference. The proportionality is a matrix with elements dependent on 
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the eigenvectors and the sign of local eigenvalues. In 1983 Coakley [6] introduced 
a second-order upwind scheme which seems to produce an oscillation-free solution 
near the normal shock in 2-dimensional transonic airfoil calculations. However, it 
was found that the scheme could generate one point overshoot near the normal 
shock in quasi-l-dimensional problems. Our computational results indicate that the 
amplitude of the one point overshoot increases for stronger shocks or on liner grids. 

In this paper, we use a variant form of the Coakley dissipation function and 
introduce a continuous transition function at the sonic point to avoid the sonic-line 
glitch. The resulting scheme is constructed in a finite-volume fashion and is second- 
order accurate except near the sonic point. Our numerical experiments indicate that 
the improved scheme produces a continuous solution across the sonic point and 
captures a sharp shock front. The scheme is as accurate as the TVD scheme of Yee, 
Warming, and Harten [ 1 ] and is as efficient as other upwind schemes [2]. 

2. MATHEMATICAL NOTATION 

The numerical scheme is presented for l-dimensional Euler equations and the 
flux-vector splitting is briefly reviewed in order to establish the necessary notation 
for the modified numerical scheme. Its extension to the two and three dimensions 
is straightforward. 

The l-dimensional Euler equations are 

(1) 

where 

are the conservative variables and the flux vectors. In Eq. (2), p is the density, u the 
velocity, p = pc2/y the pressure, pE the total energy, y the ratio of specific heats, and 
c the speed of sound. The Jacobian matrix A, defined by aFf8U, can be 
diagonalized by a similarity transformation, L: 

aF 
A=U=L-‘AL 

where A = diag(u, u + c, u - c) is formed by eigenvalues of A and L is the matrix 
composed of the corresponding left eigenvectors. Since F is a homogeneous function 
of degree one, thus F= AU. Steger and Warming split the flux vector based on the 
local eigenvalue. 
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F=AU 

= (L-‘/IL) u 

= [L-yn++n-)L] u 

=(A++A-)U 

=F++F-, 

whereA’=$(A+jAl). DetineamatrixS=L-‘sgn(A)L.Then 

SF= L-‘JAI W, w= LU. 

Note that some elements are discontinuous in S at the sonic point, as shown below: 

(1 -YY2 YlC (1 -Ye* 
s= 0 1 0 for M< 1, 

C2(Y2 - 2Y - 3)/4(Y - 1) cy(3 - Y )P(Y - 1) (Y - 1 )P 

( (3 -Y)/4 YPC (1 -Y)/2C2 
S= 0 1 0 

1 

for M=l, 

c*(Y*-2~-3)/8(~-1) CY(~-~)/4(~-1) (1+~)/4 

and 

for A4> 1. 

3. NUMERICAL METHOD 

Implicit Upwind-Differencing Algorithm 

Using backward time-differencing, the basic implicit algorithm can be written in 
a delta form 

(Z+Ata,A)AU= -Ata,F, (3) 

where AU= V(x, t + At) - U(x, t) is the delta variable and At is the time step. 
The spatial derivative in the right-hand side of Eq. (3) is approximated, in a 

finite-volume form, by 
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where Ax is the grid spacing and gi;., 1,2 is the numerical flux vector defined at the 
cell interface between grid points i and i + 1. Regardless of the form of pii, ,,*, 
Eq. (4) represents a conservative differencing. The numerical flux vector can be 
defined in terms of Ui-i, Ui, Ui+,, Ui+* as 

~i+1/2=~(F,+Fi+l-Di+1/2). (5) 

By using the characteristic variable, W, Coakley constructed the following expres- 
sion for the dissipation function, D: 

Di+ 112 = L~~1~,2(InIi+,,2AWi+1/2fA,~,,2AWi+,,,-Ai+,,,2AWi~,,2), (6) 

where 

Note that D is of second order. It was found that the Coakley dissipation function 
can produce an overshoot near the shock and the overshoot is worse for a stronger 
shock. In Huang’s first-order scheme, the dissipation function (6) used is 

Di + 112 = Si + 112 AFi + 112 2 

which can generate an oscillation-free solution. Since S AF= L -‘(A 1 A W, the 
Coakley dissipation function is rewritten as 

Di+1/2=Si+1/2AFi+1/2+L,~11I,2(Ai+1/2AWi+3/2-Aif+1/2AWi--1/2). (7) 

The modified dissipation function is able to capture a sharp shock front, but also 
generates a sonic-line glitch which is caused by the eigenvalue switching. A similar 
situation has been reported in Ref. [S]. Since there is a discontinuity in S when 
the eigenvalue changes sign, the dissipation function (7) is further modified by 
introducing a continuous transition function at the sonic point. The particular form 
of this transition function used in this paper is 

p(M) = tanh[R(M- 1)3], (8) 

where M is the Mach number and k is a parameter to control the width of the 
transition region. Other functions such as in [l] failed in the present scheme. The 
introduction of the transition function degrades the scheme accuracy from second 
order to first order. Since the value of the transition function must be - 1 upstream 
of the sonic point and + 1 downstream of the sonic point and tanh(x) is almost 
unity when x = 3, the transition region is determined by choosing a value of k. For 
example, if k = 400, the transition occurs from M= 0.804 to M= 1.196. The curve 
of /J is shown in Fig. 1. The width of the transition region can be narrowed down 
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FIG. 1. The transition function: p(M) = tanh(400 x (M- 1)‘). 

if the grid point is dense at the sonic point. The matrix S with the transition 
function in the neighborhood of the sonic point becomes 

i 

(3-r+(y+l)CLY4 Y( 1 - PPC (Y - lb - WC2 
s= 0 1 0 

~*(y*-2~-3)(1-lu)/8(~-1) CY(~-Y)(~-P)/~(Y-~) (1+~+(3-~)~)/4 1. 

It is clear that every element in S is continuous across the sonic point. Hence the 
new dissipation function does not produce any kink at the sonic point. 

The method of Roe’s averaging [S] is used for computing Si+ i,*, Lj+ 1,2, etc., in 
terms of Ui, and Ui+ i on the interface of control volumes. This leads to 

a= Pi+l “* 

(4 Pi 

ui + l/2 = 
UUj+ 1+ Ui 

l+a 

2 ci+,,*=(y-l) aH;i;~H4y$ 
( 

where H = E + pfp. 
Finally, the upwind-difference scheme is used for the 8,A in Eq. (3). It becomes 

L-’ I+-g(A+6- +A-&+)] LdcI= -~(Pi+In-e,~,,,, 
[ 
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where 6+ and 6- denote the forward- and backward-difference operators, respec- 
tively. Advantages of this algorithm are that (i) is substantially reduces computing 
time compared with the more exact block-tridiagonal form and (ii) the upwind 
differencing is naturally dissipative and enhances the stability of the overall 
algorithm. 

4. RESULTS AND DISCUSSION OF TEST CASES 

First, we consider a quasi-l-dimensional supersonic flow through a divergent 
nozzle whose cross-section area is 

A(x) = 1.398 + 0.347 tanh(0.8x - 4), O<xd 10. 

For a supersonic inflow, the flow variables (p, U, E) are specified. At the outlet, 
pressure is prescribed for a subsonic outflow. For flow variables not specified at the 
outlet, the characteristic is used to update their values at every iteration. The initial 
condition for interior points is approximated by using linear interpolation from the 
exact steady-state boundary-values. 

The total number of grid points for all test cases is 60 unless otherwise specified. 
The grid points are uniformly distributed. All the calculations were performed on 
a VAX-8600 computer. The steady-state solutions are achieved when the residual 
measured by root-mean-square error in density is less than 5 x lo-‘. The Courant 
number, CFL, is chosen to be 10. The parameter k is chosen to be 1600. However, 
several values were tried and it was found that the results were very insentitive to 
the choice of the k value. 

To see the accuracy of the present scheme, computed results are compared with 
the exact solutions and the results obtained by the Coakley scheme. Figures 2a and 
b show the pressure distributions for a supersonic divergent nozzle with the inflow 
Mach number, Mi, = 1.1, and the back pressure, pb/pI=0.7 and 0.8, where p, 
denotes the inflow total pressure. The present method produces better resolutions 
than Coakley’s, because no oscillations are generated in the vicinity of the shock. 
The convergent histories for these two cases are shown in Figs. 3a and b. It is 
apparent that the convergent rate of the present scheme is as fast as the Coakley 
scheme. In these two cases, there is no sonic point. Hence the transition function, 
~1, is not needed. To see the effect of the transition function we test the second case. 

The second example is a subsonic flow through a convergent-divergent nozzle 
whose cross-section area is 

A(x) = 
1 + 0.02( 5 - x)2, o<x<5; 
1 +0.06(x - 5)*, 5<x<lO. 

For a subsonic inflow, two flow variables are specified at the inlet. We specify 
p = p0 and E = E,,. For the convergent-divergent nozzle, the sonic point occurs at 
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the throat. This example can be used to test whether the scheme needs a smooth 
transition at the sonic point or not. Figure 4 shows that a glitch is produced near 
the sonic point if a smooth transition function is not introduced in expression (7). 
After the introduction of the smooth transition function (8), the present scheme 
produces an accurate solution without oscillations near the shock and the sonic- 
point glitch. Figure 5 shows the pressure distribution for the convergent-divergent 
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FIG. 2. (a) Comparison of pressure distribution with exact solution for a divergent nozzle with 
pb/p, = 0.8. (b) Comparison of pressure distributions with exact solution for a divergent nozzle with 
PblP, = 0.7. 
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nozzle with the subsonic inflow, Mi, = 0.2395, and the back pressure pbfpr = 0.80, 
by using the present scheme. The result is in good agreement with the exact 
solution. However, the present scheme needs more iterations for convergence. In 
this case, the present scheme needs 173 iterations, but the Coakley scheme needs 
158 iterations. Normally, if the grid points are increased, the numerical solution 
would be closer to the exact solution. Figure 6 shows the refined solutions obtained 
by the present scheme and the Coakley scheme on a finer grid with 100 points. 
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FIG. 3. (a) Comparison of convergent histories for different schemes, pb/p, = 0.7. (b) Comparison of 
convergent histories for different schemes, pb/p, = 0.8. 
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FIG. 4. Mach number distribution for a convergent-divergent nozzle, when smooth transition 
function is not introduced in Eq. (8). 

Since the amplitude of the l-point overshoot generated by the Coakley scheme 
increases, the results indicate that the present scheme can resolve the shock by grid 
refinement, but the Coakley scheme cannot. The present scheme takes approxi- 
mately one-third times longer than the Coakley scheme. 

The present result is also compared with that obtained by the implicit upwind 
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FIG. 5. Comparison of pressure distributions with exact solution for a convergent-divergent nozzle, 
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FIG. 6. Comparison of pressure distributions with exact solution after grid refinement for a 
ConvergentAivergent nozzle, pb/p, = 0.8. 

second-order TVD scheme of Yee et al. Figure 7 shows the comparison of the com- 
puted results with the exact solution. Because the TVD scheme is written in a finite- 
difference fashion, the grid points used for the TVD scheme do not coincide with 
those used for the present scheme. It is hard to judge from this comparison which 
result is better, nevertheless, it indicates that the present result is as accurate as the 
TVD result. In this case the residual is set to 10A5, because the TVD scheme cannot 
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FIG. 8. Computational grid for transonic flow over a bump in a channel, f/c=4.2%, h/c=2, grid: 
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FIG. 9. Pressure contours for transonic channel flow, M, = 0.85, f/c = 4.3 %, dCp = 0.05. 
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FIG. 11. Comparison of pressure distributions along the lower wall for transonic channel flow, 
M, = 0.85, r/c = 4.2 %. 

reach the previous convergence criterion. The convergent rate of the present scheme 
is three times faster than the TVD scheme. 

The last example is a transonic flow over a bump in a channel. The thickness 
ratio is 4.2% and the freestream Mach number is 0.85. The inlet and outlet bound- 
ary conditions are similar to the first two examples. At the solid boundary, the 
tangency condition is used. In this case, it was found that the smooth transition 
function is not important. Figure 8 shows the grid system used. The grid points are 
clustered near the bump. Figures 9a and b are the pressure contours obtained by 
the present and TVD schemes, respectively. Both contours in Fig. 9 are very similar. 
A close look at the pressure distributions along the lower wall, as shown in Fig. 10, 
indicate that the present result is as accurate as the TVD result, with only one-third 
the number of iterations needed for the TVD scheme. Figure 11 presents the 
comparison of the present result with the Coakley result. Since the normal shock 
is not strong, the Coakley result is as accurate as the present result, but needs a 
larger number of iterations. 

5. CONCLUSIONS 

An improved implicit upwind scheme of almost second-order accuracy is 
developed for the calculation of l- and 2-dimensional transonic flows. A continuous 
transition function is introduced in order to avoid the sonic-line glitch. However, 
the numerical experiments indicate that the smooth transition function is important 
only in the l-dimensional problem and the present scheme is second order except 
near the sonic point. In two dimensions, the transition function is not needed, thus 
the present scheme is second-order accurate. Numerical results show that the 
present scheme is as accurate as the implicit TVD of Yee et al. and is as efficient 
as other upwind schemes. 
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